ManyTypesd4TypeScript: A Comprehensive TypeScript Dataset
for Sequence-Based Type Inference

Kevin Jesse
krjesse@ucdavis.edu
University of California, Davis
Davis, CA, USA

ABSTRACT

In this paper, we present ManyTypes4TypeScript, a very large
corpus for training and evaluating machine-learning models for
sequence-based type inference in TypeScript. The dataset includes
over 9 million type annotations, across 13,953 projects and 539,571
files. The dataset is approximately 10x larger than analogous type
inference datasets for Python, and is the largest available for Type-
Script. We also provide APT access to the dataset, which can be
integrated into any tokenizer and used with any state-of-the-art
sequence-based model. Finally, we provide analysis and perfor-
mance results for state-of-the-art code-specific models, for baselin-
ing. ManyTypes4TypeScript is available on Huggingface, Zenodo,
and CodeXGLUE.

KEYWORDS
Type Inference, Machine Learning, TypeScript, Code Properties

ACM Reference Format:

Kevin Jesse and Premkumar T. Devanbu. 2022. ManyTypes4TypeScript: A
Comprehensive TypeScript Dataset for Sequence-Based Type Inference.
In 19th International Conference on Mining Software Repositories (MSR ’22),
May 23-24, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3524842.3528507

1 INTRODUCTION

There is considerable interest recently in the application of machine
learning (ML) models to a variety of software-related tasks and
datasets. ML has largely focused on improving performance, using
probabilistic models of source code that exploit code’s regularity
and patterns [4]. The type-inference problem is one such task where
probabilistic code models work well. Probabilistic type guessers
can infer types for developers, helping them avoid type errors,
and lowering the annotation effort [9]. TypeScript and Python have
been the primary languages targeted by researchers [27, 34]. Recent
ML-based methods [5, 11, 12, 23-26, 32] appear to work well, but
are hard to compare, due to variability in evaluation practices.
The field of type inference varies quite a bit, in methods, data,
and metrics. With the abundance of open source repositories, new
methods often mine their own data or attempt to sample similar
data from previous work [5, 12, 26, 32]. Despite these works often

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner /author(s).

MSR ’22, May 23-24, 2022, Pittsburgh, PA, USA

(© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9303-4/22/05.
https://doi.org/10.1145/3524842.3528507

Premkumar T. Devanbu
ptdevanbu@ucdavis.edu
University of California, Davis
Davis, CA, USA

using similar metrics, performance is confounded with scoring dif-
ferences and sampling bias. Scoring differences arise when various
subsets of types are evaluated and not others, for example, based
on frequency (top-100), location (parameter, and function level),
and annotation type (user-defined). Sampling bias occurs from type
inference papers sampling different projects or files at various com-
mits where code context and the annotations themselves can differ.
Though there have been some attempts at standardized compar-
isons for instance DeepTyper [11] and NL2Type [21], Typilus [5]
and Type4Py [23], other recent publications showed quite a bit of
variance in evaluation, e.g. some used Top 100 types [24]; some com-
pare across different projects; others use the same projects, but at
different time slices. We feel there is still a need for a comprehensive
TypeScript dataset and metrics.

To help standardize training and evaluation for TypeScript type
inference, we offer the ManyTypes4TypeScript dataset. This com-
prehensive dataset includes over 9 million type annotations, which
is 10x more annotations than the next largest Python annotated
dataset ManyTypes4Py [22]. The Many Types4TypeScript also comes
with evaluation scripts, enabling models to be properly bench-
marked against the test set. We make all of our collection scripts,
unprocessed data (Zenodo'), processed API dataset (Huggingface?),
usage examples, and evaluation script publicly accessible. The dataset
was collected in mid January of 2022 for publicly available GitHub
projects. Our contributions are as follows:

o A dataset containing a comprehensive set of code snippets
and aligned type annotations across 13,953 TypeScript projects
resulting in 9M type annotations.

o Standardized access across a range of state-of-the-art models
on (& Huggingface.

e Standardized scoring with metrics and existing evaluation
of three state-of-the-art models.

e Additional word tokenized data for flexible model input,
allowing choice of sub-tokenization methodologies. We in-
clude the mining scripts so the SE community can update
the dataset as needed.

All of our code is publicly available. In the next section we discuss
the collection process and parsing of projects.

2 COLLECTION PROCESS AND PARSING

Figure 1 illustrates the collection process and parsing from project
to machine learning dataset. First we use GraphQL?> to gather a
list of ~29,500 public TypeScript projects on GitHub. The GraphQL
query returns TypeScript projects by the number of GitHub stars

Lhttps:
2https:
Shttps://

zenodo.org/record /6387001
huggingface.co/datasets/kevinjesse/ManyTypes4TypeScript
graphql.org

https://orcid.org/0000-0003-0484-1766
https://orcid.org/0000-0002-4346-5276
https://doi.org/10.1145/3524842.3528507
https://doi.org/10.1145/3524842.3528507
https://zenodo.org/record/6387001
https://huggingface.co/datasets/kevinjesse/ManyTypes4TypeScript
https://graphql.org

MSR ’22, May 23-24, 2022, Pittsburgh, PA, USA

Table 1: Statistics Across Data Splits

Split ‘ Train % ‘ Test % ‘ Validation %

Projects 11,413 81.8% 1,336 9.58% 1,204 8.62%
Files 486,477 90.16% | 28,045 5.20% 25,049 4.64%
Examples | 1,727,927 91.95% | 81,627 4.34% 69,652 3.71%
Types 8,696,679 95.33% | 224,415 2.46% 201,428 2.21%

The data set is split across projects.

to ensure the collection of quality projects. After mining the list of
projects, a custom bash script attempts to install packages, types,
and other requirements with Pnpm®. This is important for compiler
inferred types as inferred types largely come from resolved package
dependencies. Each file’s AST (abstract syntax tree) is traversed,
extracting both human annotations as well as compiler-inferred
annotations. The traversal, gathers the tokens and labels types on
the AST nodes. The types are removed and the tokens are pushed
onto a queue. The types are aligned to the token sequence to create
an aligned pair. This process is repeated recursively for each direc-
tory that contains a “tsconfig. json”. The final output from our
parser is a json for each project. We aggregate the project outputs
and prepare the data for de-duplication.

De-duplication is essential, as shown by Allamanis [3], prior to
training machine learning models; duplication can result in biased
performance estimates. Lopes et al.[19] identified a large amount of
near-duplicate code on GitHub; Allamanis [3] released a tool based
on Jaccard similarity to help the community avoid this issue. We
run the de-duplication tool® on the raw corpus to find & remove
duplicates. Out of 1,128,744 original files, 204,358 duplicates (about
18%) were found and removed, leaving 924,386 files. After filtering
files with annotations 539,571 files remained. The de-duplication
is done without type annotations, to ensure that even differently
annotated duplicates are safely removed; this is different from Mir
et al.[22]. Mir et al.[22] performs lemmatization over variables for
classic NLP techniques like TF-IDF. This limits input choices for
model developers. With the adoption of subtokenization, subtok-
enizers pretrained on large code corpora are trained to tokenize
complete token sequences. By leaving the sequences tokenized in
contiguous words, it is up to the model designer to determine how
to represent the input. Techiques include: words, identifier splitting
[30], BPE [28], WordPiece [15], SentencePiece [16], lemmatization,
etc. This is paramount as Shi et al.[29] recently showed that split-
ting identifiers when combined with BPE subtokens can improve
performance.

The de-duplicated set of token sequences, type annotations, and
type meta-information is split by projects ~80%/10%/10% which
provides a file split of ~90%/5%/5% for train/test/validation respec-
tively. More information on the data split can be found in Table 1.
As shown in Figure 1, the JSONL unprocessed data splits are up-
loaded to Zenodo. Next we define a output vocabulary size of 50,000
and replace any type that exceeds rank 50,000 with an UNK token.
In classification tasks with finite vocabulary, a special type token
UNK represents a type guess that exceeds the classifiers prediction

4https://pnpm.io
Shttps://github.com/Microsoft /near-duplicate-code-detector

Jesse and Devanbu

Table 2: JSON schema in ManyTypesdTypeScript

JSON Field Type Description
tokens list[string] Sequence of tokens (word tokenization)
labels list[string] A list of corresponding types
url string Repository URL
path string Original file path that contains token sequence
commit_hash string Commit identifier in the original project
file string File name

capabilities. This is a function of the model and can be changed
for models using a larger or smaller classification layer. Addition-
ally, the uninformative “any” type annotation is removed from the
training and evaluation data. These are standard practices for clas-
sification tasks. The schema of files in the Huggingface dataset can
be found in Table 2. Table 2 consists of tokens, labels, repository
url, file path, commit hash and file name. This schema is fed into
the dataloading script and can also be found on the Huggingface
“Dataset card”. Finally, the custom Huggingface dataloading script,
named ManyTypes4TypeScript.py, can be used to generate and
push the dataset to the Huggingface hub. This script is available
on the Zenodo dataset page so anyone can “fork” a customized
ManyTypes4TypeScript dataset.

In the next section, we discuss the design choices of our API
Huggingface dataset and how the design of the Datasets Hub [17]
provides easy to use, optimally compressed access to over 12GB of
type inference data.

3 DATASET DESIGN AND USEABILITY

The ManyTypes4TypeScript dataset conforms to the Huggingface
Datasets specification for several reasons. First, the compatible Hug-
gingface transformers library incorporates state-of-the-art models
including code specific models like CodeBERT [8], GraphCode-
BERT [10], and CodeBERTa [33] which has been widely used across
the field especially in CodeXGlue [20] for a wide set of tasks and
model probing [14]. New advancements in transformers are often
integrated into Huggingface, thus permitting new applications to
existing tasks in addition to easily accessible models [1, 8, 10, 31]. It
is our goal to make the type inference task as widely applicable to
new state of the art transformers with ManyTypes4TypeScript. In
later sections we discuss our application of ManyTypes4TypeScript
on three SOTA models.

Second, another reason for hosting ManyTypes4TypeScript on
Huggingface are the efficiency and scale capabilities. The datasets
are capable of being cached completely once downloaded and map-
ping operations i.e subtokenization and subtoken label alignment
are also cached. The datasets are stored as compressed .parquet
files with Git-LFS (large file storage) and work seamlessly with all
available tokenizers and feature-extraction tools. Massive datasets
can also be streamed. Model training and evaluation can be acceler-
ated with the Huggingface accelerate® library which is particularly
helpful for sequence tagging efficiency.

Finally, the tokenizer, dataset and any transformer model can be
instantiated in the following five lines of code (LOC).

Shttps://github.com /huggingface/accelerate

https://pnpm.io
https://github.com/Microsoft/near-duplicate-code-detector
https://github.com/huggingface/accelerate

ManyTypes4TypeScript: A Comprehensive TypeScript Dataset for Sequence-Based Type Inference

MSR °22, May 23-24, 2022, Pittsburgh, PA, USA

Figure 1: The collection and parsing process of ManyTypesdTypeScript

Projects Project Analyer ————— NLP Pipeline Push to Platforms ~——— Model Scoreboard
Install Packages . . . 1 ||Remove Empty m
Train/Test/Valid "a
and Types Compile Type Sequences Y TranSfO rmers
ASTVisitor | Find Types MRemoveany || Geaterabal | —
Parse Nodes and Locations . Align Subtokens|
— Types Vocabulary “ Datasets Subtokenize and Labels
Remove Types W?:h:l?tfnc:s Apply Label Export Vocab Type Specific Model
yp Vocabulary and Dataset Metrics Scoreboard
Align Types
E tJSON
To Sequence xpor

Figure 2: Frequency of annotation locations in Many-
TypesdTypeScript.

le6

3.5

Frequency
e B B N N W
w o w o v o

e
o

Parameter Method
Annotation Type

Variable Function

Figure 3: Top 10 most frequent types in ManyTypes4Type-
Script.

string

any

number

array

o void
Q

= Promise

boolean

object

T

Array

o

200000 400000

Frequency

600000 800000

(1) The dataset is downloaded from Huggingface or instantiated
from a local directory.

dataset = load_dataset('kevinjesse/
ManyTypes4TypeScript')

(2) Then the tokenizer is instantiated.

tokenizer = AutoTokenizer.from_pretrained('
microsoft/graphcodebert-base')

(3) The dataset is tokenized into subtokens and the labels are
aligned with our provided align_labels function to map
labels to the first subtoken.

tokenized_dataset = dataset.map(align_labels)

—~
N
=

The label list is extracted from the ManyTypes4TypeScript

meta data.

label_list = tokenized_dataset["train"].features[f"
labels"].feature.names

(5) The weights for GraphCodeBert [10] are instantiated with a

projection layer fit to ManyTypes4TypeScript type vocabu-

lary.

model = AutoModelForTokenClassification.

from_pretrained('microsoft/graphcodebert-base'
, num_labels=len(label_list))

With the above steps, one can instantiate a model with the Many-
Types4TypeScript dataset; the model developer has end-to-end
control of model input and output schemes. For example, the model
developer can use the GraphCodeBERT contextual embeddings for a
kNN (k-nearest neighbor) search rather than a classification layer;
this would effectively expand the closed-vocabulary output.

The closed type output of the Huggingface API dataset is fixed
to 50,000 type categories; but is amenable with the dataset scripts
on Zenodo. The current type vocabulary on Huggingface covers
approximately 94.08% of all type occurrences as most types are
“common” types. The remaining types placed in the UNK category
cover approximately 5.92% of the 9M types. These types are local
and infrequent types, where the types occur less than 10 times
corpus wide. Figure 2 represents the frequency of type annota-
tion locations where the majority are variable declarations and
function parameters with 3.8 million and 3.7 million annotations
respectively. Figure 3 represents the frequency of the top 10 most
frequent types in the ManyTypes4TypeScript corpus. The majority
of types are string, any, and number. With a large majority of
human and compiler inferred types resolving to the uninformative
“any” type, probabilistic type inference has the potential to increase
type coverage; type coverage in the optional type setting reaches
traditional static typing when all types are annotated or inferred.
Finally in Figure 4, we examine the ratio of compiler inferred types
to human annotations in ManyTypes4TypeScript. We examine that
most types are mixed between compiler inferred and human anno-
tations. Corpus wide, the ratio is approximately 57% inferred types
to 43% human annotated types. Figure 4 shows that only 20% of
“any” are labeled by humans and the vast majority are inferred by

MSR ’22, May 23-24, 2022, Pittsburgh, PA, USA

Jesse and Devanbu

Figure 4: The ratio by percentage of developer vs. inferred annotations by type in the top 50 most frequent types.

1.

=3

0.

©

0.

o

Ratio (Percentage)
IS
S

0.

N)

0.0

mmm Inferred Annotations
mmm Developer Annotations

2 232 FE 8 S ET @ FEEPERYSEL RS Py LEs e YYEEEELEE LY B
SEE355egd S EEEsgeTEdiezeg: LR EnosfcEisE e38538¢2¢2¢8
gz ° > 5 32 52 = s g
g= g E ¢ g £
& s = o & 8
Type Annotation
Table 3: Accuracy Comparisons On ManyTypesdTypeScript.
Model N Top 100 N Overall
Precision Recall ~F1 Accuracy | Precision Recall F1 Accuracy
CodeBERT [8] 84.58 85.98 85.27 87.94 59.34 59.80 59.57 61.72
GraphCodeBERT [10] 84.67 86.41 85.53 88.08 60.06 61.08 60.57 62.51
CodeBERTa [33] 81.31 82.72 82.01 85.94 56.57 56.85 56.71 59.81
PolyGot [2] 84.45 8545 84.95 87.72 58.81 58.91 58.86 61.29
GraphPolyGot [2] 83.80 85.23 84.51 87.40 58.36 58.91 58.63 61.00
RoBERTa [18] 82.03 83.81 8291 86.25 57.45 57.62 57.54 59.84
BERT [7] 80.04 81.50 80.76 84.97 54.18 54.02 54.10 57.52

Top 100 types are the most frequent 100 types. Overall is scored with all type locations. UNK is considered

incorrect.

the compiler. The compiler resolves the type to be any when the
compiler cannot determine the type from existing type constraints.
Quantifying a model’s ability to resolve the “any” type is a possible
derivative work from our dataset as “any” type annotations are
available in the Zenodo data. Lastly, in Figure 4, some types are all
or nearly all human annotations. This is a unique opportunity for
type inference models to assist compilers, alert developers to must
have annotations, and resolve types accordingly.

In the next section, we discuss tracking models’ performances
with a public scoreboard and pushing models trained on the Many-
Types4TypeScript dataset to the Huggingface model hub.

4 TRACKING PERFORMANCE AND
REPRODUCIBILITY

The ManyTypes4TypeScript dataset on Huggingface is integrated

with “Papers With Code”” which tracks new papers with con-

sistent metrics. The ManyTypes4TypeScript dataset on Hugging-

face keeps a list of all models trained or “fine-tuned” on Many-

Types4TypeScript. The models that are trained and evaluated on

Thttps://paperswithcode.com /dataset /manytypesdtypescript

ManyTypesdTypeScript and pushed to the model hub are linked to
the ManyTypes4TypeScript datacard viz. homepage. These models
can be downloaded and verified in section 3. The ManyTypes4Type-
Script is currently being integrated into the CodeXGLUE®[20] set
of tasks. CodeXGLUE is a benchmark dataset and open challenge
for code intelligence managed by Microsoft Research. With Many-
Types4TypeScript, there is a community driven approach to adding
datasets, metrics, models, and documentation to institute a stan-
dardization across the type inference task for TypeScript. Next we
discuss our supplied metrics.

5 TASK SPECIFIC METRICS AND SCORES

In the dataset on Zenodo, standard sequence evaluation scripts
segeval? are available to evaluate the sequence predictions. We
modify the ground truth and predictions such that scoring subsets
of types can be done easily. We permit classic tagging scoring,
considering UNK predictions as incorrect, and top-100 type scoring.
The community can add various subsets to the existing metrics

8https://microsoft.github.io/CodeXGLUE
9https://github.com/chakki-works /seqeval

https://paperswithcode.com/dataset/manytypes4typescript
https://microsoft.github.io/CodeXGLUE
https://github.com/chakki-works/seqeval

ManyTypes4TypeScript: A Comprehensive TypeScript Dataset for Sequence-Based Type Inference

such as user-definition and location specific scoring. Our scoring
metrics also permit per type evaluation. The dataset in CodeXGLUE
will have detailed instructions and scripts to evaluate models, and
these scripts will be used to track and verify the task leader-board.

Table 3 contains a list of state-of-the-art models scored with the
aforementioned metrics. The performance of the models are similar
in overall top 100 accuracy to Jesse et al.[12] which is completely
pre-trained on JavaScript. The performance between the models is
in line with previous comparisons [2, 14]. The models provided by
us serve as baselines for future contributions. We intend to increase
the number of models evaluated across ManyTypes4TypeScript
including but not limited to: C-BERT [6], CuBERT [13], PLBart [1],
and CodeT5 [31]. Additionally, we plan to increase the granularity of
the metrics so specific outcomes can be evaluated viz. user-defined

types.

6 CONCLUSION

In this paper, we present the ManyTypes4TypeScript dataset of
over 9 million type annotations across 13,953 projects and 539,571
files. ManyTypes4TypeScript aims to facilitate the application of
new advances in ML-based type inference, with easy to use APIs.
ManyTypes4TypeScript standardizes evaluation with the provided
test set, metrics, and baselines. By providing the tools used to ex-
tract ManyTypes4TypeScript and evaluate state-of-the-art models,
we believe that the dataset itself can be a useful resource for the
community to maintain and contribute to the type inference task
for TypeScript.

ACKNOWLEDGMENTS

We gratefully acknowledge support from NSF CISE (SHF) Grant
No. 1414172.

REFERENCES

[1] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang.
2021. Unified Pre-training for Program Understanding and Generation. arXiv
preprint arXiv:2103.06333 (2021).

[2] Toufique Ahmed and Premkumar Devanbu. 2021. Multilingual training for
Software Engineering. arXiv preprint arXiv:2112.02043 (2021).

[3] Miltiadis Allamanis. 2019. The adverse effects of code duplication in machine
learning models of code. In Proceedings of the 2019 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software. 143-153.

[4] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. 2018.
A survey of machine learning for big code and naturalness. ACM Computing
Surveys (CSUR) 51, 4 (2018), 1-37.

[5] Miltiadis Allamanis, Earl T Barr, Soline Ducousso, and Zheng Gao. 2020. Typilus:
Neural type hints. In Proceedings of the 41st acm sigplan conference on program-
ming language design and implementation. 91-105.

[6] Luca Buratti, Saurabh Pujar, Mihaela Bornea, Scott McCarley, Yunhui Zheng,
Gaetano Rossiello, Alessandro Morari, Jim Laredo, Veronika Thost, Yufan Zhuang,
et al. 2020. Exploring software naturalness through neural language models.
arXiv preprint arXiv:2006.12641 (2020).

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:

Pre-training of deep bidirectional transformers for language understanding. arXiv

preprint arXiv:1810.04805 (2018).

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,

Linjun Shou, Bing Qin, Ting Liu, et al. 2020. Codebert: A pre-trained model for

programming and natural languages. arXiv preprint arXiv:2002.08155 (2020).

[9] Zheng Gao, Christian Bird, and Earl T Barr. 2017. To type or not to type: quantify-
ing detectable bugs in JavaScript. In 2017 IEEE/ACM 39th International Conference
on Software Engineering (ICSE). IEEE, 758-769.
[10] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, et al. 2020. Graphcodebert: Pre-training
code representations with data flow. arXiv preprint arXiv:2009.08366 (2020).

8

=

(1]

[12

(13

[14]

[15

[16

(17

[18

=
L

[20

[21

[22]

[24

[25

[26

[27

[29

[30

[31

(32]

[33

[34

MSR °22, May 23-24, 2022, Pittsburgh, PA, USA

Vincent] Hellendoorn, Christian Bird, Earl T Barr, and Miltiadis Allamanis. 2018.
Deep learning type inference. In Proceedings of the 2018 26th acm joint meeting
on european software engineering conference and symposium on the foundations of
software engineering. 152-162.

Kevin Jesse, Premkumar T Devanbu, and Toufique Ahmed. 2021. Learning type
annotation: is big data enough?. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 1483-1486.

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. 2019. Pre-
trained contextual embedding of source code. (2019).

Anjan Karmakar and Romain Robbes. 2021. What do pre-trained code models
know about code?. In 2021 36th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 1332-1336.

Taku Kudo. 2018. Subword regularization: Improving neural network translation
models with multiple subword candidates. arXiv preprint arXiv:1804.10959 (2018).
Taku Kudo and John Richardson. 2018. Sentencepiece: A simple and language
independent subword tokenizer and detokenizer for neural text processing. arXiv
preprint arXiv:1808.06226 (2018).

Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur,
Patrick von Platen, Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, et al. 2021. Datasets: A Community Library for Natural Language
Processing. arXiv preprint arXiv:2109.02846 (2021).

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Dangi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

Cristina V Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub Zitny,
Hitesh Sajnani, and Jan Vitek. 2017. DéjaVu: a map of code duplicates on GitHub.
Proceedings of the ACM on Programming Languages 1, OOPSLA (2017), 1-28.
Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambro-
sio Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding
and Generation. arXiv preprint arXiv:2102.04664 (2021).

Rabee Sohail Malik, Jibesh Patra, and Michael Pradel. 2019. NL2Type: inferring
JavaScript function types from natural language information. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). IEEE, 304-315.
Amir M Mir, Evaldas Latoskinas, and Georgios Gousios. 2021. ManyTypes4Py: A
Benchmark Python Dataset for Machine Learning-based Type Inference. arXiv
preprint arXiv:2104.04706 (2021).

Amir M Mir, Evaldas Latoskinas, Sebastian Proksch, and Georgios Gousios. 2021.
Typedpy: Deep similarity learning-based type inference for python. arXiv preprint
arXiv:2101.04470 (2021).

Irene Vlassi Pandi, Earl T Barr, Andrew D Gordon, and Charles Sutton. 2020.
OptTyper: Probabilistic Type Inference by Optimising Logical and Natural Con-
straints. arXiv preprint arXiv:2004.00348 (2020).

Yun Peng, Zongjie Li, Cuiyun Gao, Bowei Gao, David Lo, and Michael Lyu. 2021.
HiTyper: A Hybrid Static Type Inference Framework with Neural Prediction.
arXiv preprint arXiv:2105.03595 (2021).

Michael Pradel, Georgios Gousios, Jason Liu, and Satish Chandra. 2020. Type-
writer: Neural type prediction with search-based validation. In Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 209-220.

Veselin Raychev, Martin Vechev, and Andreas Krause. 2015. Predicting program
properties from” big code”. ACM SIGPLAN Notices 50, 1 (2015), 111-124.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2015. Neural machine
translation of rare words with subword units. arXiv preprint arXiv:1508.07909
(2015).

Jieke Shi, Zhou Yang, Junda He, Bowen Xu, and David Lo. 2022. Can Identifier
Splitting Improve Open-Vocabulary Language Model of Code? arXiv preprint
arXiv:2201.01988 (2022).

Xiaobing Sun, Xiangyue Liu, Jiajun Hu, and Junwu Zhu. 2014. Empirical studies
on the nlp techniques for source code data preprocessing. In Proceedings of the
2014 3rd international workshop on evidential assessment of software technologies.
32-39.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. 2021. CodeT5: Identifier-
aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and
Generation. arXiv preprint arXiv:2109.00859 (2021).

Jiayi Wei, Maruth Goyal, Greg Durrett, and Isil Dillig. 2020. Lambdanet: Probabilis-
tic type inference using graph neural networks. arXiv preprint arXiv:2005.02161
(2020).

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al.
2019. Huggingface’s transformers: State-of-the-art natural language processing.
arXiv preprint arXiv:1910.03771 (2019).

Zhaogui Xu, Xiangyu Zhang, Lin Chen, Kexin Pei, and Baowen Xu. 2016. Python
probabilistic type inference with natural language support. In Proceedings of
the 2016 24th ACM SIGSOFT international symposium on foundations of software
engineering. 607-618.

	Abstract
	1 Introduction
	2 Collection Process and Parsing
	3 Dataset Design and Useability
	4 Tracking Performance and Reproducibility
	5 Task Specific Metrics and Scores
	6 Conclusion
	Acknowledgments
	References

