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Abstract—With the advent of powerful neural language mod-
els, AI-based systems to assist developers in coding tasks are
becoming widely available; Copilot is one such system. Copilot
uses Codex, a large language model (LLM), to complete code
conditioned on a preceding “prompt”. Codex, however, is trained
on public GitHub repositories, viz., on code that may include
bugs and vulnerabilities. Previous studies [1], [2] show Codex
reproduces vulnerabilities seen in training. In this study, we
examine how prone Codex is to generate an interesting bug
category, single statement bugs, commonly referred to as simple,
stupid bugs or SStuBs in the MSR community. We find that
Codex and similar LLMs do help avoid some SStuBs, but do
produce known, verbatim SStuBs as much as 2x as likely than
known, verbatim correct code. We explore the consequences of
the Codex generated SStuBs and propose avoidance strategies
that suggest the possibility of reducing the production of known,
verbatim SStubs, and increase the possibility of producing
known, verbatim fixes.

Index Terms—language models, prompting, deep learning,
software engineering

I. INTRODUCTION

The rise of language-model based AI coding tools promises
to change programming practice. Developers can now use
AI coding tools, which inherit their power from models
trained on enormous corpora of open-source code. Copilot,
a language-model based coding assistant [3], is available in
many integrated development environments (IDEs). Copilot
uses a model named Codex [4] to generate code completions.
The full power of Codex is still being learned: it can already
perform a diverse set of tasks including: code completion [4],
automatic program repair (APR) [5], comment generation [4],
[6], program synthesis [7], [8], and incident management [9].

Copilot is free to use, and is widely adopted. It is an
attractive tool for developers at different skill levels; it helps
provide starting points for developers [10] and can start
functions from just input, output examples [7]. The capabilities
of Codex and similar models [11]–[14] have raised many
concerns, and have given rise to different research thrusts.
Active avenues of Copilot research include how developers
work with it: researchers report concerns on an over-reliance
and unwarranted trust in Copilot-generated code [10], [15], the
quality of the completions [16], [17], security implications [2],
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[18]–[20], and copyright infringement [21]. These research
topics are motivated by the free access and popularity of
Copilot, particularly, the use of code it generates may give
rise to broader ethical and functional concerns.

Codex has been found to work for program repair [5], [22],
problem solving [21], [23], math [24], [25], and translation
from natural language to various target languages [4], [23],
[26], [27] to name a few applications. With many use cases,
Codex is a double-edged sword of utility and risk and ulti-
mately we should find ways to minimize the risk and maximize
the utility of Codex.

To that objective, this work examines Codex on the 2021
MSR mining challenge dataset ManySStubs4J [28]. The
dataset consists of single statement ‘simple, stupid bugs’
(SStuBs) mined from Maven projects. Karampatis and Sutton
found that SStuBs have a frequency of 1 in every 1,600
LOC and that static analyzers cannot detect them [28], [29].
Mosolygó et al. [29] determined that SStuBs appear more
in larger chunks of code authored by the same developer,
perhaps due to loss of attention or misunderstanding of code
functionality. We see this exact phenomena in Codex studies
[10], [15] where developers use Codex to generate large blocks
of code and, if a bug is found, dive into a time-consuming
rabbit hole to fix the code [10]. Worse, this study reports that
developers often blindly trust generated code, or optimistically
hope to fix problems later.

Surprisingly, so-called “simple, stupid” bugs can survive a
long while; in the SStuBs dataset, fixes take around 240 days
[29], [30]. More worryingly, when Codex generates code, an
‘agent’ other than the active IDE user is actually ‘coding’,
and thus the number of commits to fix the SStuB might be
even longer (see Mosolygó et al. [29]). This disappointing
possibility is supported by surveys [10], [15], suggesting
that developers don’t always understand generated code, and
struggle to fix any bugs therein.

The performance of Codex has been extensively bench-
marked [4], [22], checked for security vulnerabilities [18],
[18]–[21], and empirically evaluated [2], [10], [15], [17].
However, Codex has not been evaluated against SStuBs, which
are a special kind of bug [31]. To understand SStuBs related to
AI-supported programming, we evaluate whether Codex and
other code completion models produce SStuBs, or their fixes;
also we look at the consequences of such bugs in code bases.
Finally, we present a Codex experiment aimed at automatically
communicating developer intent, using generated comments,
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to help avoid introducing simple, stupid bugs, and also pro-
ducing commented code.

Our research questions are as follows, all primarily evalu-
ated using the ManySStuBs4J dataset:

• RQ1: How often do Codex and similar language models
(CodeGen [14] and PolyCoder [13]) produce simple,
stupid bugs?

• RQ2: When Codex generates the same simple, stupid
bug that a human does, how much time does the SStuB
originally take to fix?

• RQ3: Does Codex produce buggy or correct code more
confidently (viz. at higher probability)?

• RQ4: Does adding automatically generated comments to
the prompt help Codex and akin language models avoid
SStuBs? Do other types of prompt improvements help
reduce SStuBs?

• RQ5: How do bug-derived code comments, when in-
serted in the prompt, affect code generated by Codex and
other LLMs?

Our key findings are: (1) LLMs do help avoid some SStuBS
in our dataset! (2) Codex and other LLMs do produce known
SStuBs, and at a rather high rate (perhaps twice as often
as they produce known correct, bug-fixing code); (3) When
Codex generates a known SStuB, it’s associated (historically)
with longer fix-times; (4) Codex-generated completions appear
equally ‘natural’ [32], regardless of whether they match buggy
code or the related fix; if they match neither, they are less
natural. (5) Automatically generated comments, when added
to prompts, appear to reduce the known SStuB production
rate for most models and improve the bug/patch ratio; (6)
Even buggy comments help to reduce the bug/patch ratio in
Codex, suggesting just attempting to comment code helps. The
improvement in avoiding SStuBs with comments from neural
comment generation model CodeTrans [33], suggest that using
these models with Codex would be beneficial to avoid SStuBs.

Data from this study is available here1.

II. RELATED WORK

We discuss related work on language models and code
quality.

A. Simple, Stupid Bugs

Simple, stupid bugs (SStuBs) are bugs that have single-
statement fixes that match a small set of bug templates.
They are called “simple” because they are usually fixed by
small changes and “stupid” because, once located, a developer
can usually fix them quickly with minor changes. However,
locating SStuBs can be time-consuming [28]. Karampatsis
and Sutton [28] published a collection of SStuBs mined from
a set of template bug types, e.g., CHANGE_IDENTIFIER or
DIFFERENT_METHOD_SAME_ARGUMENTS. Through their study
of the dataset, Karampatsis found that SStuBs are prevalent
in code bases, accounting for 33% of single statement bugs
detected in 1000 Maven projects. They found that these bugs

1https://doi.org/10.5281/zenodo.7676325

occur every 1,600 lines of code, and were not detected by static
analysis. MSR once used ManySStuBs4J dataset as a mining
challenge, to study these bugs, and manage their impact.

Mosolygó et al. [29] studied the history of SStuBs. They
find that SStuBs are more frequent in code modified by the
same developer, often when s/he writes large chunks of code.
This is perhaps because such large coding tasks strain focus
and attention. They found that only 40% of SStuBs were fixed
by the same author in a median time of 4 days; when the
SStuB is fixed by a different author, the SStuB took 136 days
to find and fix! We hypothesize that if comments were present
in a Codex prompt, we’d get better code completions, and the
entire chunk would be easier to read & fix.

Zhu and Godfrey [34] studied how developers fix SStuBs.
Similar to Mosolygó et al. [29] they found that developers fix
their own bugs quicker, whereas bugs from other developers
take significantly more time to fix. This suggests that Codex
generated SStuBs may take longer to fix since they come
from an artificial ‘developer’. Codex-generated code-snippets
that include SStuBs may require extensively debugging to be
patched in a similar fashion. A Copilot study [10], found
that users had trouble debugging generated code from Codex
spending considerable time and effort to fix, for instance, a
generated regular expression.

Madeiral and Durieux [35] discussed SStuBs in the context
of code clones [36] and the changes that introduce them,
viz. “change clones”. They found that 29% of change clones
introduced SStuBs by matching the 16 SStuB patterns. Since
Codex is a language model that tends to repeat code it’s seen,
it could conceivably generate SStuBs in multiple locations,
increasing the repair effort.

Peruma and Newman [37] examined SStuBs in unit test
files. They found that SStuBs tend to occur in non-test files
and that developers fix the bugs separately despite test and
non-test files being functionally related. Peruma and Newman
also discovered that developers prioritize non-test files and the
fixes in tests are associated with asserts.

Latendresse et al. [30] and Hua et al. [31] addressed the
detection of SStuBs. Latendresse et al. [30] found that contin-
uous integration (CI) tools cannot catch any SStuBs. Hua et
al. [31] found that deep learning vulnerability detectors were
suboptimal compared to traditional vulnerability detectors on
SStuBs. Our results confirm that models as large as Codex,
find SStuBs to be equally regular to the patches it generates.

Mashhadi et al. [38] applied CodeBERT [39] (fine-tuned
for patching) to SStuBs and could fix 19% of de-duplicated
Many4SStuBs4J dataset. Mashhadi et al. mentions an advan-
tage of using CodeBERT: no special tokens are required like in
SequenceR [40]; similarly, many APR techniques with Codex
[5], [22] rely on a prior of knowing a bug exists or even,
more specifically, the bug location [40]. Adding comments to
the prompt does not require making any of these assumptions.

Finally, PySStuBs [41] is a Python simple, stupid bug
dataset. The more recent TSSB-3M [42] is also a Python
SStuBs dataset mined at scale. Our study focuses on
the established Java SStuBs patterns from the everpopular

https://doi.org/10.5281/zenodo.7676325


ManySStuBs4J dataset. We plan to expand our findings to
other languages and SStuB patterns, resources permitting.
Currently OpenAI restricts usage of Codex to 20 requests per
minute. Inference on large models for ManySStuBs4J takes
just over a day.

B. Examining Codex Completions

Vaithilingam et al. [10] studied the developer experience
with Codex. The key findings were that most participants
preferred Codex to Intellisense in Visual Studio IDE. Par-
ticipants preferred to use Codex as a starting point in lieu
of searching online. Unfortunately participants over-relied on
Codex and then struggled when generated code was buggy.
The authors reported three major issues: (1) participants often
didn’t understand and assess the correctness of generated code,
(2) participants underestimated the repair-effort required when
generated code was buggy, (3) the prompts used by partici-
pants were quite varied, sometimes resulting in undesired code
completions.

Sarkar et al. [15] wrote an extensive review of programming
with an AI assistant Codex. Sarkar et al. surveys previous work
citing Codex’s reliability, safety, and security implications. The
review covers studies in Codex usability, design, and user
reports. Sandoval [18] and Perry [19] examine Codex security
implications.

Yetistiren et al. [16] and Nguyen et al. [17] empirically
studied Copilot’s code suggestions. Yetistiren et al. [16] found
Copilot mostly generated valid code and Copilot improved
it’s correctness with further input from the developer; sam-
ple examples, unit tests, docstrings, and prompts increased
correctness further. Nguyen et al. [17] found Copilot correct-
ness varies by programming language and does not differ in
complexity (cognitive and cyclomatic) among programming
languages.

Prenner et al. [5], Pearce et al. [1], [22], Karmakar et
al. [21], and Ahmed et al. [6], [9] apply Codex in various
settings: automatic program repair (APR) [5], security vul-
nerability prediction [22], HackerRank challenges [21], code
summarization [6], and incident management [9]. In APR,
Prenner et al. tried engineering prompts to find a way to push
Codex to generate a non-buggy version of the code. Codex
performed competitively to recent work but was sensitive in
the prompt. Pearce et al. found Codex could repair 58% of real
world security vulnerabilities. Karmaker et al. applied Codex
on HackerRank problems with great success; some of the
success was attributed to Codex already knowing the solution
despite an incomplete prompt, in other words, memorizing
the solution. Ahmed et al. trains Codex on few-shot project-
specific code to achieve state-of-the-art code summarization.
Ahmed et al. found success in using Codex to help engineers
diagnose and mitigate production incidents. All of these works
use prompting to illicit a desired response from Codex.

Prompting instructions with natural language or code is of-
ten implemented as a comment to the prompt passed to Codex.
The prompts are implemented as comments to improve gen-
erated code, e.g., natural language instructions in docstrings

Fig. 1: The orange highlighted code is the candidate single line
completion that Codex can match to the automatic evaluation
either the known bug or fix. Blue highlighted code is the
prompt a.k.a. the text proceeding SStuB statement that Codex
uses for completion. The purple highlighted code is the code
after the SStuB.

or input-output examples. Prompting relies on knowledge a
priori that Codex should adopt into its generations. A prompt
could be: an example completion, a problem description, input
format, code that is vulnerable, a docstring documenting a bug
location, input-output pairs, and snippets of bugs and corre-
sponding patches (few-shot). In this work, we explore similar
prompting techniques from Prenner [5], and focus on prior-
free prompting through traditional commenting practices. We
find that good commenting practices can guide Codex to more
SStuB-free completions.

III. METHODOLOGY

In this section, we describe the methodology for evaluating
Codex [4], PolyCoder [13], and CodeGen [14] on SStuBs.

A. Experimental Setup

ManySStuBs4J
This dataset consists of a small and large dataset with 10,231

and 63,923 single-statement bug-fix changes (a.k.a SStuBs)
mined from 100 and 1000 popular repositories respectively.
These SStuBs must match one of 16 bug templates. The goal
is to collect bugs that are difficult to locate, but easy to fix. It’s
natural to wonder if automated coding tools based on language
models could introduce such single-statement bugs.



(a) This completion is incorrect.

(b) This completion matches the fix. Earlier in the code, the constant
MINIMAL_POLL_PERIOD is set to 1.

Fig. 2: This annotation tool helps mark Codex completions
that do not match any SStuB directly. This guarantees our
evaluation is not missing reasonable alternatives to the SStuB
that could be deemed a bug or fix.

For our study, we use the ManySStuBs4J large dataset of
63,923 samples and use git checkout to obtain versions
of the bug prior and after being fixed. We use git blame

to determine when the bug was introduced and capture key
statistics such as the number of commits to fix the SStuB.
The bug locations within the files are indexed with fields
bugNodeStartChar and bugNodeLength. Using these fields
we can find the code before the bug, the bug, the fix, and
the code after the bug/fix. Our experiment focuses on giving
Codex a piece of code prior to the bug and seeing if Codex
generates the correct code (fix) or incorrect code (bug). A large
concern in this experiment is to make sure Codex has an equal
opportunity to generate the known bug or patch. Therefore,
we remove SStuBs that have other changes besides fixing the
SStuB, which could otherwise condition or bias Codex to make
a decision; for example, a new variable only exists in the buggy

Fig. 3: Match rate of Codex Davinci (left). Completions that
do not match a patch or SStuB are validated by hand (right).

version so Codex completes the bug. This leaves 34,595 bugs
prior to deduplication. Then we drop duplicates for bugs that
share the exact same prefix, bug, and fix. It is important to not
inflate results by duplicate code examples [43]. The remaining
16,899 SStuBs are used for evaluating all models.

Codex, PolyCoder, CodeGen
Large language models like Codex, PolyCoder, and Code-

Gen are demonstrably useful in code completion tools like
Copilot, and are available for experimentation. Other models
exist, like AI21 Jurassic; however they are not free, and would
be costly at our scales, so were excluded from our study. We
also didn’t have the computational resources to run very large
models locally. For these reasons, we follow the methodology
from Xu et al. [13] and use CodeGen, PolyCoder, and Codex.

Codex derives from GPT-3; its training data consists of
natural language and source code from available sources like
public GitHub repositories. Codex has two sizes one called
cushman-codex and davinci-codex [44]. To query cushman-
codex and davinci-codex models, we must make API requests
using the OpenAI API (free, but rate-limited to 20 requests a
minute). While the exact number of parameters is unknown,
for both cushman-codex and davinci-codex models, prior work
suggests sizes of 12B and 175B parameters [4], [5], [26]
for cushman-codex and davinci-codex respectively. Codex is
primarily trained on Python [4].

To determine if our results generalize to other large language
models (LLMs) for code, we evaluate two additional families
of models on SStuBs. These models are trained with different
procedures and are readily available. CodeGen [14] is an
auto-regressive transformer model, trained with the next-token
prediction objective on a corpus of code and natural language
from GitHub. CodeGen is trained on multiple languages, but
Python is the primary language. PolyCoder [13] is based
on GPT-2 architecture and is trained on 250GB of code
across 12 programming languages with C, C++, and Java
being the primary language. PolyCoder outperforms all other
code LLMs in C including Codex. Codex, PolyCoder, and
CodeGen represent a diverse set of models all with several



model size versions. Testing our the SStuBs hypothesis on
Codex, PolyCoder, and CodeGen highlights potential risks of
inducing SStuBs while using LLMs. While we cannot say for
certain, other LLMs trained on similar data could show similar
behavior.

We use the aforementioned models to generate completions
by prompting with the code before the SStuB. When models
complete the prompt, we can analyze the completion, by
matching the known bug, or fix, from the SStuBs dataset. To
compare completions to the bug and patch ground truths, we
use substring matching (ignoring whitespace and formatting).
To verify the accuracy of the results, a survey was conducted
where the authors determined if sampled completions (n=401)
match the bug, fix, or no match in a manner the automatic
evaluation could not capture. For each model family, the
best performing model completions were subjected to finer
scrutiny; it is important that semantic equivalents are properly
counted, such as Codex replacing a constant for the equivalent
literal value. The manual survey interface2 is screen-shot in
Figure 2. Figure 2a shows a completion that is logically
incorrect. In Figure 2b, Codex actually replaces a constant with
its literal value which matches the fix. 401 randomly selected
SStuBs are evaluated across each of the three model families
to guarantee a confidence level of > 95%. The overwhelming
majority of completions are semantically incorrect to the bug
or patch, see Figure 3.

1 // Fix bugs in the below function.
2 ...
3 g2d.setColor(tabFillColor);
4 g2d.fill(shaper.reset().doRect(boundsX, topY + shape

.path.deltaY(1),
5 boundsWidth, paintBorder.top).getShape());
6

7 if (

Listing 1: Prompting Codex with hint.

1 // Fix bugs in the below function
2

3 // Buggy Java
4 paintBorder.top >= 1
5

6 //Fixed Java
7 paintBorder.top > 1
8 ...
9 g2d.setColor(tabFillColor);

10 g2d.fill(shaper.reset().doRect(boundsX, topY + shape
.path.deltaY(1),

11 boundsWidth, paintBorder.top).getShape());
12

13 if (

Listing 2: Prompting Codex the bug and fix.

Prompting LLMs with Comments
Large language models were found to be surprisingly ef-

fective with good prompting [45]. “Prompt engineering” is
the process of constructing a text prompt, either just a textual
prefix and/or set of explicit instructions to induce generation

2The annotation tool is a fork from localturk, a tool designed to emulate
Amazon’s Mechanical Turk. https://github.com/danvk/localturk

Fig. 4: Adding neural-generated comments, step by step, in
the prompt preceeding the SStuB. The first added comment
induces greatest improvement in generated code.

of desired text. Prompt engineering has shown an effect on
fixing programs, and generating solutions to coding questions
[21], [22], [46]; see Listing 1 for an example. Effective
prompts may include sample input-output pairs [5] or SQL
queries [26], [27]; Listing 2 is an example of bug-fixing
comments according to the OpenAI API instructions [44].
This form of traditional hard-prompting [46], named hard
because it uses hard-coded language, requires a prior viz. some
known information about the input, e.g., it is buggy. In Codex
experience surveys [10], it appears that prompt engineering is
not useful in situ, for actual coding. Still, prior work suggests
prompt engineering can sometimes be useful [5], [46], [47].

We hypothesize including comments within a code prompt
might pre-condition the model better, to produce more relevant
and better overall code, in a couple ways: (1) generated code,
if relevant, will be easier to understand; previous works show
that comments help code comprehension [10], [48], [49]. (2)
comments will help generated code be more maintainable [50],
[51]. This led us to use comments to augment the readability
and maintainability of the code prior to the SStuB for Codex.
Figure 4 illustrates the incremental addition of comments
starting around the SStuB, and then to surrounding code. We
automatically generate comments using CodeTrans comment
generation model [33], trained on the DeepCom dataset [52].
The comment generation model [33] can use any number of
statements to condition its outputs on; we chose to use two
statements for each comment, plus the buggy or fixed line, to
keep the comment related to the SStuB.

Comments can be generated from either the buggy or
fixed version of code. Comments generated from the fixed

https://github.com/danvk/localturk


version of the code should represent the correct logical steps
through the single statement bug. On the other hand, comments
generated from the buggy version should represent mostly
correct steps with a minor single statement mistake. We test all
models using both versions of generated comments; the fixed
version representing a “non-buggy” comment and the buggy
version a “buggy” comment; this facilitates an evaluation
of how non-buggy vs. buggy comments influence Codex’s
ability to avoid/make a single-statement mistake. We suspect
that commenting in general, regardless of minor mistakes in
natural language descriptions, will still condition Codex to use
more reliable, well commented data for generation. Figure 4
shows the incremental addition of comments with automatic
comment generation tools. We find that the comments are
beneficial for Codex models, irrespective of the developer’s
minor misunderstanding as conveyed in comments.

Prompt input, length, and SStuB completion
The code prior to the SStuB, if available, is the conditional

input to the model or prompt. The prompt, or code prior to
the SStuB, is identical for all 16,899 SStuBs which guarantees
the model is not biased towards the bug or the fix. When
commenting the SStuB, an automatically generated comment
from CodeTrans is placed above the lines used to generate it,
properly tabulated, such that the comment appears natural as
a developer would place it; see Figure 1. The prompt includes
the code prior to the bug and up to the maximum allowed
amount for each model. The length of any comments reduces
the available input we can pass to the LLMs due to the fixed-
length token window. The token window for Davinci is 8000
and the other models, Cushman, PolyCoder and CodeGen, are
2048. The token window is ultimately reduced further by the
code completion length as the model performs generation in
an auto-regressive fashion.

LLM code completions can span several lines. Codex can
use a stop token, such as the newline character, to terminate
completion early. We found that LLMs, like Codex, often
add arbitrary newlines and whitespace to completions; thus
terminating completion on a newline might otherwise leave
unmatched completions. Instead, we ask the LLMs to complete
a length of 64 tokens, which is sufficient for almost all SStuBs;
SStuBs have a mean length 29 tokens and a median length
25 tokens. After generating a sequence of length 64, the
completion is compared to the SStuB ignoring whitespace.
The generated sequence must match the SStuB completely to
count as a bug or fix.

In the next section, we present the results from our findings:
how often Codex and LLMs produce SStuBs, the number of
commits to fix the generated SStuBs, and how annotating code
with comments can improve performance on SStuBs.

IV. RESULTS

A. SStuB production in LLMs (RQ1)

Table I is the number of bugs, patches, and non-matching
completions from studied LLMs. We use the bug/patch ratio,

TABLE I: SStuB production rate on off-the-shelf LLMs

(a) LLM completed SStuBs vs. correct code.

Model Bugs Patches No Match Bug/Patch Match Rate (%)

PolyCoder 160M 3429 1635 11835 2.10 29.97
PolyCoder 0.4B 3672 1852 11375 1.98 32.69
PolyCoder 2.6B 3924 2096 10879 1.87 35.62
CodeGen 350 3709 1911 11279 1.94 33.26
CodeGen 2B 4102 2756 10041 1.49 40.58
CodeGen 6B 4168 2944 9787 1.42 42.09

CodeGen 16B 4299 3296 9304 1.30 44.94
Cushman 12B 3775 1833 11291 2.06 33.19
Davinci 175B 4452 2267 10180 1.96 39.76

(b) Manually examined model predictions when neither bug or patch
a.k.a. “No Match” is detected.

Model PolyCoder 2B CodeGen 16B Davinci
counts % counts % counts %

Incorrect 361 90.02 357 89.03 362 90.27
Patch 19 4.74 28 6.98 19 4.74
Bug 15 3.74 10 2.49 14 3.49

Unsure 6 1.50 6 1.50 6 1.50

**** ****
ns

0

2000

4000

Bug Patch No Match
group

N
u

m
b

e
r 

o
f 

C
o

m
m

it
s

Fig. 5: Developers take more time, measured in commits,
to resolve SStuBs that Codex generates. All differences are
pairwise statistically significant to p ≤ 0.0001.

as a metric to universally compare models as the overall num-
ber of successful completions, either a SStuB or a patch, varies
between models. Codex, PolyCoder, and CodeGen 350M all
produce nearly 2x as many bugs as patches. Davinci-codex and
cushman-codex perform surprisingly poorly given their size,
and extensive training. It is plausible that the Codex models
recapitulate bugs seen in training data [21], however, many of
these SStuBs will have been addressed per their inclusion in
the ManySStuBs4J corpus two years ago; viz. there is a fix.
Although Codex produces a high rate of SStuBs, Codex is
capable of avoiding 13.41% of SStuBs in the dataset.

RQ1: Codex and LLMs produce twice as many SStuBs as
correct code. Codex manages to avoid 13.41% of SStuBs.



TABLE II: Bug Rate and Patch Rate after adding a comment around the SSTUB.

Model Name Model Size
(Billions)

Bug Change % Change Patch Change % Change Bug/Patch
Ratio Change

% Change Match Rate
Change

PolyCoder 160M 0.16 -427 -12.45 150 9.17 -0.42 -20.42 -1.64
PolyCoder 400M 0.4 -376 -10.24 250 13.50 -0.41 -21.94 -0.75
PolyCoder 2.6B 2.6 -407 -10.37 323 15.41 -0.42 -23.23 -0.50
CodeGen 350M 0.35 -427 -11.51 256 13.40 -0.43 -21.70 -1.01
CodeGen 2.7 2.7 -655 -15.97 129 4.68 -0.29 -18.73 -3.11
CodeGen 6B 6.1 -742 -17.80 -174 -5.91 -0.18 -11.59 -5.42
CodeGen 16B 16.1 -759 -17.66 -81 -2.46 -0.20 -10.24 -4.97
Codex Cushman 12.0 800 21.19 2329 127.06 -0.96 -44.90 18.52
Codex Davinci 175.0 877 19.70 2882 127.13 -0.93 -46.08 22.24

TABLE III: LLM completed SStuBs vs correct code with a
comment prior.

Model Bugs Patches No Match Bug\Patch Match Rate (%)

PolyCoder 160M 3002 1785 12112 1.68 28.33
PolyCoder 0.4B 3296 2102 11501 1.57 31.94
PolyCoder 2.6B 3517 2419 10963 1.45 35.13
CodeGen 350M 3282 2167 11450 1.51 32.24

CodeGen 2B 3447 2885 10567 1.19 37.47
CodeGen 6B 3426 2770 10703 1.24 36.66
CodeGen 16B 3540 3215 10144 1.10 39.97
Cushman 12B 4575 4162 8162 1.10 51.70
Davinci 175B 5329 5149 6421 1.03 62.00

B. Number of commits to fix LLM produced SStuBs (RQ2)

Figure 5 shows the number of commits to fix of SStuBs
where Codex generates the original human-created ‘Bug’, or
a ‘Patch’, or something else (‘No Match’). For each of these
categories, we examine the version-control history to examine
how long (count of commits from introduction to fix, using
git blame) developers took to fix them. Unfortunately,
the number of commits to fix when Codex (re)produces
SStuBs (bugs) is significantly longer than in other cases.
The median number of commits to fix for the bugs, patches,
and no match is 265, 106, and 121 commits respectively.
Significance of pairwise t-tests was sustained even after the
conservative Bonferroni correction. This finding suggests that
when Codex generates SStuBs, these might inherently take
human developers longer to fix! If used widely in open-source
code, Codex might spout SStuBs that live longer (in version
history) and further pollute future Codex training data. We
believe future, detailed investigation in the 4452 matching
SStuBs might help improve Codex.

RQ2: The ManySStuBs4J data suggest that in cases where
Codex wrongly generates simple, stupid bugs, these may take
developers significantly longer to fix than in cases where
Codex doesn’t.

C. SStuB regularity (RQ3)

The significant number of commits to fix SStuBs vs.
patches (RQ2) motivates a comparison of the “naturalness”
of bugs, patches, and no match group of SStuBs. Figure 6
shows that there is little difference between the negative log-
likelihood of bugs and patches. As expected, the ‘no-matches’
have a higher negative log-likelihood, since these completions
were presumably not seen in the training set. The similar
negative log-likelihood of SSTuBs and patches suggests that
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Fig. 6: SStuB bugs and patches from Codex are equally more
natural than other code it generates. All differences are pair-
wise statistically significant to p ≤ 0.0001.

it may be challenging to fine-tune Codex to detect or avoid
SStuBs, since Codex rates them both equally ‘natural’; we
leave this for future work. However we do study if proper
prompt engineering (e.g., with comments), might help matters.

RQ3: Codex log-probabilities indicate that SStuBs (bugs and
patches) are regular and natural, thus making detection diffi-
cult.

D. Avoiding SStuBs (RQ4)

We now turn to the question of whether adding natural lan-
guage comments to the prompt suppresses SStuB generation
by Codex. Table III shows the results of inserting a single
comment into the prompt. Table II captures the rate change
in bugs, patches, and bug/patch ratio after adding a comment
prior to the SStuB. First, Codex and other LLMs PolyCoder
and CodeGen behave differently, namely in the match rate;
Codex match rate increases by 19-22% where as other LLMs
do not change much. In PolyCoder and CodeGen, the number
of bugs decreases from 10-18% and the patch rate increases.
The bug/patch ratio in all models improves! Codex Cushman
and Davinci generate 20% more bugs, but then produce 127%
more patches. The bug/patch ratio is cut by almost half. This
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(a) Codex models (Cushman & Davinci), without comments, perform
not well on bug/patch ratio and the match rate.
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(b) Commenting code helps Codex achive best performance across
SStuBs while improving the match rate;

Fig. 7: Prompting with comments should be used to both avoid
SStuBs

suggests that developers get better results by commenting code
while using Codex: this amounts to about 3000 more patches
(5149 vs. 2267).

Figure 7 are scatter plots showing the relationship between
match rate and bug/patch ratio. Ideally, models will have a
high match rate (less unknown cases) and a low bug/patch
ratio. Per Figure 7a, Codex models Cushman and Davinci were
not competitive to other off the shelf models. After adding
comments to the SStuB prone code, Figure 7b, all models
perform better and Codex performs much better than the next
best model CodeGen 16B.

Figure 8 shows the effect of adding comments to the bug/-
patch ratio with model parameter counts. Adding a comment
in the prompt helps more than increasing parameter counts!
A 160M parameter PolyCoder with a comment outperforms
(by 14% improvement in bug/patch ratio) both the Codex
Cushman 12B and Davinci 175B, without comments.

Finally, Figure 9 shows bug/patch ratio (Figure 9a) and
number of patches (Figure 9b) by the bug type (given in the
ManySStuBs4J dataset) ranked left to right by the frequency
in the dataset. The largest improvements in bug/patch ratio
in a sufficient set of samples are LESS_SPECIFIC_IF,
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Fig. 8: Bug/Patch Ratio vs. Parameter Count. Three model
families at various sizes. The largest difference is the addition
of 1 comment prior to the SStuB.

MORE_SPECIFIC_IF, OVERLOAD_METHOD_MORE_ARGS,
and DIFFERENT_METHOD_SAME_ARGS. The bug types that
gained the most patches are CHANGE_IDENTIFIER and
DIFFERENT_METHOD_SAME_ARGS. SWAP_ARGUMENTS got
worse, but only consists of 4 total examples, and it is hard to
make any conclusions from this.

E. Commenting vs Traditional Prompting (RQ4 cont.)

Prompting LLMs both in NLP and SE applications often
come in the form of instructions prior to the input. Previous
empirical studies of Codex [1], [5], [7], [16]–[20], [22], [46]
prompt Codex with instructions, input-output pairs, or exam-
ples prior to the input that the model is conditioning the output
on. We compare in a similar fashion to Prenner et al. [5] by
providing Codex with hints (Listing 1), and SStuBs (Listing 2).
We remind the reader that both prompting techniques found
commonly in previous works, require knowing something
about the snippet of code that will be generated; e.g., a location
in the code that has a SStuB (hint) and what the SStuB is and
how to fix it (bug and fix).

While both approaches improve the bug/patch ratio and
match rate, Table V, neither does as well as adding natural
language comments. Furthermore the number of bugs greatly
increases in the traditional prompting techniques.

RQ4: Commenting code can lead to less generated SStuBs
and more generated patches. Codex models improve the most
from code comments.



TABLE IV: Bug Rate and Patch Rate after adding erroneous comments around SSTUB.

Model Name Model Size
(Billions)

Bug Change % Change Patch Change % Change Bug/Patch
Ratio Change

% Change Match Rate
Change

PolyCoder 160M 0.16 59 1.72 -237 -14.50 0.40 18.97 -1.05
PolyCoder 400M 0.4 171 4.66 -132 -7.13 0.25 12.69 0.23
PolyCoder 2.6B 2.6 234 5.96 -145 -6.92 0.26 13.84 0.53
CodeGen 350M 0.35 110 2.97 -178 -9.31 0.26 13.54 -0.40
CodeGen 2.7 2.7 -78 -1.90 -420 -15.24 0.23 15.74 -2.95
CodeGen 6B 6.1 -264 -6.33 -603 -20.48 0.25 17.79 -5.13
CodeGen 16B 16.1 -95 -2.21 -558 -16.93 0.23 17.72 -3.86
Codex Cushman 12.0 1511 40.03 1135 61.92 -0.28 -13.52 15.66
Codex Davinci 175.0 1620 36.39 1613 71.15 -0.40 -20.31 19.13
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(a) Comment effect on bug/patch ratio. Lower is better. Top axis
is total SStuB count, little significance placed on bug categories
with less than 100 samples.
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Fig. 9: Effect of adding comments to Codex Davinci prompt.

TABLE V: Codex (Davinci) performance across various
prompting techniques.

Prompt Bugs Patches No Match Bug/Patch Match Rate (%)

Hint 6228 4814 5857 1.29 65.34
Bug & Fix 6565 6055 4279 1.08 74.68
Comment 5329 5149 6421 1.03 62

F. What if we insert a ‘buggy’ comment? (RQ5)

Finally, we try inserting a buggy comment in the prompt,
to mimic the developers description of the SStuB. The natural
language comment for buggy code is created by conditioning
CodeTrans on the SStuB (bug) rather than correct code
(patch). Table IV shows the difference in bugs, patches,
bug/patch ratio, and match rate with a buggy comment before
the SStuB. Surprisingly, Codex is robust and still improves
bug/patch ratio over the “no comments” case. This suggests
that the mere presence of relevant comments in the prompt
sufficiently pushes the model to produce better code. It’s

also interesting to note that the lower capacity models (and
also the 16B parameter CodeGen) tend to be misled by the
‘buggy’ comments, whereas the larger capacity, well-trained
Codex models are not.

RQ5: Misleading comments still condition Codex to produce
less SStuBs. Commenting appears beneficial irrespective of
the developer’s understanding of the SStuB.

V. DISCUSSION

A. Implications of Findings

Implications of Codex Producing SStuBs
The good news: Our study suggests that LLMs like Codex

do help avoid a significant number of SStuBs in our dataset,
out-of-the-box, and even more with non-buggy comments! But
they do produce simple, stupid bugs. Even Codex produces
up to 2x more SStuBs as patches, if used directly, nor does
increasing model size (see Table I) necessarily help.



To better understand why Codex still produce SStuBs,
one must further examine the training data (sadly, not avail-
able for many LLMs); we hope training data will become
more available. Previous work [2], [7], [20] studying Codex-
generated vulnerabilities blames Codex’s language modeling
roots, which push it to produce the most “likely completion
(for a given prompt) based on the encountered samples during
training”. Also, SStuBs are capable of lasting for long periods
of time [29] and are not detected by continuous integration
[30] or static analysis [28], [29], [31] which explains why
Codex recapitulates them (from it’s training data). Simple,
stupid bugs are likely regularly injected by devs; training
Codex without SStuBs would be challenging, given training
data is drawn from 54 million repositories [4]. The effect
of Codex produced SStuBs is significant, and troubling. The
number of commits to fix Codex produced SStuBs versus the
avoided SStuBs is significant, taking more than twice as long
to fix. Still we should bear in mind that Codex avoids 2,267
bugs on its own or 13.41% of the dataset, indicating an AI
paired programmer is helpful in avoiding SStuBs too.

Avoiding SStuBs with LLM
Codex and other LLMs respond unpredictably to prompts,

and developers often struggle to get LLMs to generate desired
code [10]. Studies suggest that breaking coding tasks into
manageable sub-problems helps [10], [27]. NLP tasks work
similarly; chain-of-thought [53] and reasoning step-by-step
[54] improve problem-solving rate. Commenting is ideally a
form of step-by-step reasoning, explaining high level steps, or
clarifying confusing code. The generated comments we used
appear to be high-level descriptions and not deep technical
commentary of computed values and algorithmic mechanisms.
Our work suggests minimal effort techniques, like automati-
cally generated documentation, may help avoid SStuBs when
using an AI programming assistant like Copilot. Not only can
comments be automatically generated as documentation, but
comments can be used directly as a prompt for Codex. To the
best of our understanding, Codex might condition the gener-
ated code on a smaller search-space of non-buggy solutions,
thus helping the developer avoid introducing SStuBs.

Lastly, comments can sometimes be used to check the
implementation consistency given the desired functionality
[55]. Future work could examine if SStuBs can be detected
with the same tools given a set of generated comments.

In our experiments the placement of comments is uniform,
and further work should be done to determine best possible
comment placement in a density that is adequate and not ex-
cessive; automatic methods exist [56]. Excessive commenting
is typically symptomatic of a lack of understanding of the code
and a “code smell” [57].

Maintaining AI Generated Code
Language models for code like Codex, PolyCoder, Code-

Gen, and others [39], [58]–[61] will become bigger, and better
at code completion [62]. In a world where AI programming
assistants learn from data at scale [63], it is hard to say how

much of novel programming projects or code reuse [43] will
guide such tools. Fundamentally, there is a need for improved
readability and comprehensibility in AI-generated code [10].
Code comments can improve comprehensibility of inserted
code, especially of more difficult statements. Code that is more
readable and understandable is much more maintainable. Our
work suggests that comments help avoid SStuBs, in addition to
the traditional role of improving code readability. Prior work
indicates that SStuBs are usually not fixed by the inserting
developer, but by other developers [34], with greater effort; we
note that a SStuB inserted by an AI programming assistant, is
always an “other developer”.

Lastly, the preliminary successes on SStuBs warrants further
research in comment generation with AI programming assis-
tants. Comment generation models like DeepCom [52] and
CodeTrans [33] are fully automated and could function in a
variety of roles for AI programming assistants. For example,
comment generation models could serve as automatic code
commenting for Codex completions, be used to check for
implementation consistency and accuracy, and improve the
quality of training data for Codex to name a few. Our approach
of using comments with Codex should be reexamined under
a variety of applications including program repair and defect
prediction. This is an interesting future direction.

VI. THREATS TO VALIDITY

A. Internal Validity

ManySStuBs4J
We assume the samples in this dataset are mostly actual

bugs. The authors report that changes related to refactoring,
are removed, but some non-bug-fixing commits may remain.

Manual Inspection
We use automated matching to determine whether the mod-

els produce a known SStuB or patch. However, it is possible
the automatic evaluation misses semantically equivalent but
syntactically different bugs or patches. This could potentially
hide the true number of bugs and patches. To reduce this threat
to our results, we have three independent raters (the authors)
inspect random samples from davinci-codex completions (for
the cases with no-comments, and the cases with non-buggy
comments) that matched neither bug nor fix (we call this
unmatched subset “dark matter”).

With fair agreement, Fleiss Kappa 0.40, the independent
raters found the vast majority (over 80%) to be inappropriate
code completions (neither bug nor fix — just wrong), and
sparsely little bugs or patches for the no-comment case with
Davinci Table Ia. With moderate agreement, Fleiss Kappa
0.6, the independent raters found a smaller majority (about
70%) of inappropriate code generations in the “dark matter
sample” for the non-buggy comment case, Table III. The
independent ratings all found that, even in the “dark matter”
sample, adding comments in the prompt resulted in substantial
increase in patches. While we acknowledge that Codex non-
match completions pose a threat to our findings, our sampled
examination of this “dark matter” in both settings (with and



without comments) suggests that adding comments does help
LLMs avoid the generation of SStuBs.

Data Leakage from LLM Training
We cannot independently verify that the ManySStuBs4J

dataset is excluded in the training of the models since none
of the models’ training data is published. “Data leakage” is
traditionally a concern when evaluating the performance of
language models as data seen during training might artificially
inflate results. In our case, data leakage will bias the model
towards an outcome either the bug or the fix. We examined
the latest fix date for the studied SStuBs and found 100% of
the SStuBs were fixed by February 2019 and the earliest data
collected for training is 2020 (cushman) and 2021 (davinci).
If there is data leakage from ManySStuBs4J, we postulate the
models would most likely see the fixed version of the code,
but intriguingly, the models still produce 2x more SStuBs!

Reproductions of Generations
Depending on hyper-parameters, Codex models are nonde-

terministic in their text generation (for the same prompt). We
sampled the top-1 completion for each ManySStuBs4J sample
across all models (Codex, PolyCoder, and CodeGen), with and
without comments.

B. External Validity

ManySStuBs4J
Generalizability is subject to the limits of ManySStuBs4J.

The dataset consists of Java single statement bugs; our results
may not generalize to other languages, or less simple bugs.
PySStuBs [41] and TSSB-3M [42] are larger, and cite different
SStuB patterns. The ManySStuBs4J dataset is the appropriate
size given our constraints on available compute, and also API
access to Codex. We were limited by OpenAI’s rate ceiling of
20 requests per minute; on local hardware, the largest model,
CodeGen 16B takes over a day for a run with a single prompt
on ManySStuBs4J.

Models at Scale
Language models are getting ever larger. Results may vary

with the next generation of models.

VII. CONCLUSION

Most importantly, we find that Codex and other large lan-
guage models significantly help avoid human-produced simple,
stupid bugs! In our best case, around 30% (5149) SStuBs were
actually patched (avoided) by Codex Davinci. Still, we find
that large language models might produce many more SStuBs
than patches. First, Codex and PolyCoder produce nearly
twice as many SStuBs as fixes. Second, and very worryingly,
Codex generated SStuBs apparently took significantly longer
to resolve and that the SStuBs appear to be as natural as the
correct statements. Our results show that AI pair programming
can introduce SStuBs, and the manner in which developers
are known to use such tools is not conducive to avoiding
SStuBs. Still, though the models were somewhat SStuB prone,

even out-of-the-box LLMs could have avoided as many as
2,300 SStuBs had developers used code completion instead of
writing them.

Since the simple, stupid bugs are quite obvious after detec-
tion, we explore the idea of guiding AI assistants by adding
comments describing high-level functionality. The proposed
strategy of communicating functional intent to Codex with
comments improved the bug/patch ratio substantially. Finally,
we explore minor misunderstandings in the intended func-
tionality by using buggy comments and find that Codex may
not require strict correctness in comments to avoid SStuBs.
Our results suggest that good commenting practices, even in
an automatic setting, can help other developers and Codex,
especially in an era where AI generated code is regularly
committed.

Overall, our findings are somewhat promising, LLMs may
help avoid at least some simple, stupid bugs!
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